Modifiable Risk Factors for Covid 19

Joseph Pizzorno, ND
Editor-in-Chief, IMCJ
Co-Author, *Textbook of Natural Medicine*Chair Science Board, Bioclinic Naturals

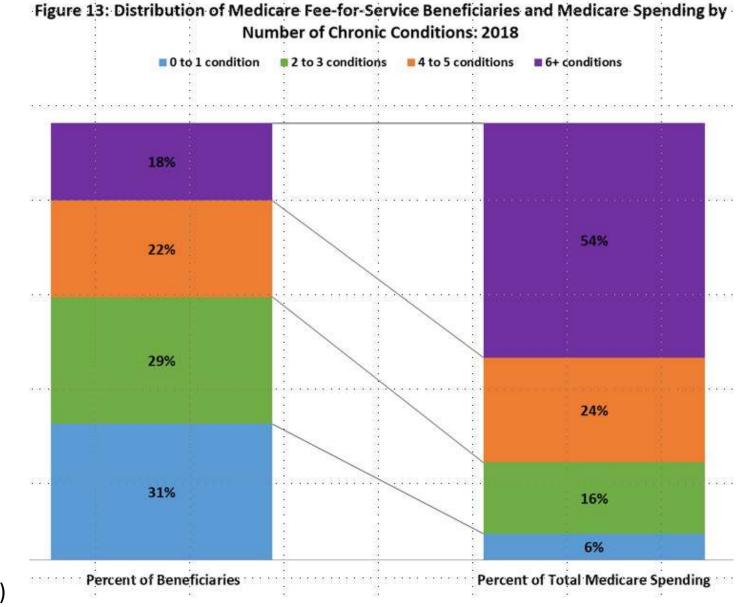
Overview

- Who Gets COVID
- Modifiable Risk Factors
 - Co-morbidities
 - Blood Sugar Control
 - Diet
 - Nutrient Status
 - Environmental Toxins
- The Promise of Antiviral Flavonoids
- Supplementation
- Mathematics of Converting Risk to Protection
- Putting It All Together

Who Gets COVID and Dies From it in United States

	18-29 yo	30-39 yo	40-49 yo	50-64 yo	65-74 yo	75-84 yo	85+ vo
	,	,	,	,	,	,	,
Cases	Ref	1x	1x	1x	1x	1x	1x
Hospitalized	Ref	2x	2x	4x	6x	9x	15x
Death	Ref	4x	10x	35x	95x	230x	600x

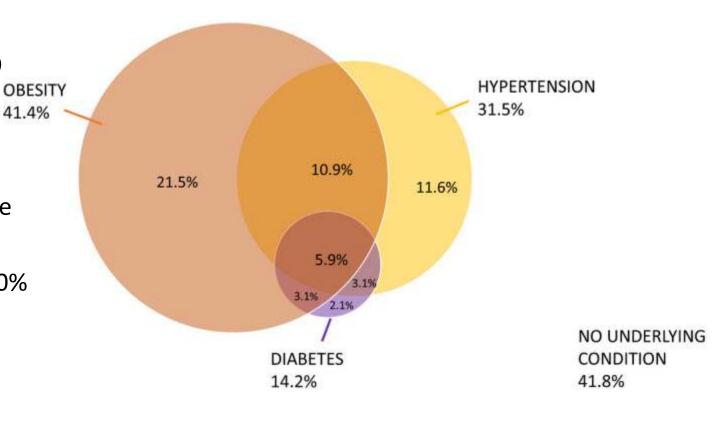
Adapted from: Murray M, Pizzorno J, Morello G. Killer Immunity. 2022


Co-Morbidities!

- 53% of people who die from COVID have 2 or more co-morbidities
- 75% of vaccinated people who die from COVID have 4 or more comorbidities
- US Medicare expenditures mostly for people with 4 or more comorbidities

People with Multiple Co-Morbidities Account

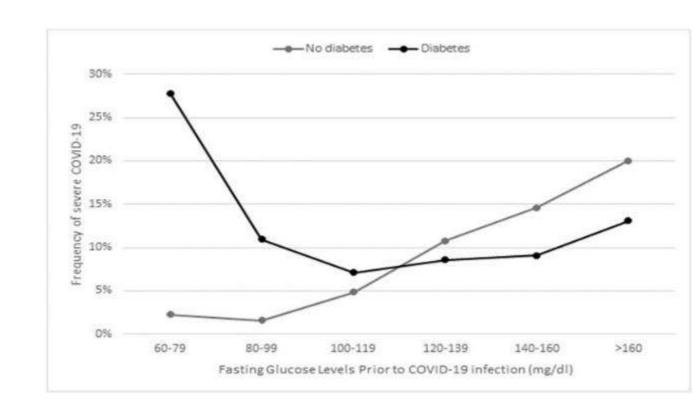
for Most Expenses


- 2018 data
- 6+ comorbidities (14%) account for 54% of costs
- 4 or more comorbidities account for 78% of costs

Co-Morbidities

Co-Morbidities

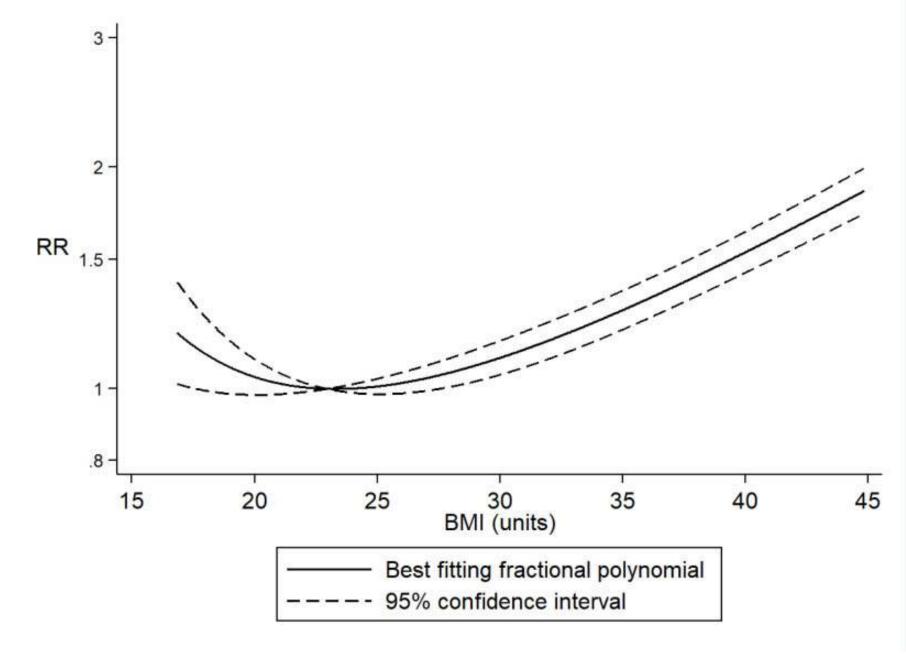
- Virtually everyone who died from COVID has one or more comorbidities.
- 63.5% of COVID hospitalizations attributable to 4 conditions:
 - Diabetes, obesity, hypertension, heart failure
- UK study of 2,217 patients:
 - 1-2 co-morbidities increased risk of death 70%
 - 3 or more had 130% increased risk of death
- Similar numbers from China:
 - 1 co-morbidity increased risk of death 79%
 - Multiple increased risk of death to 159%



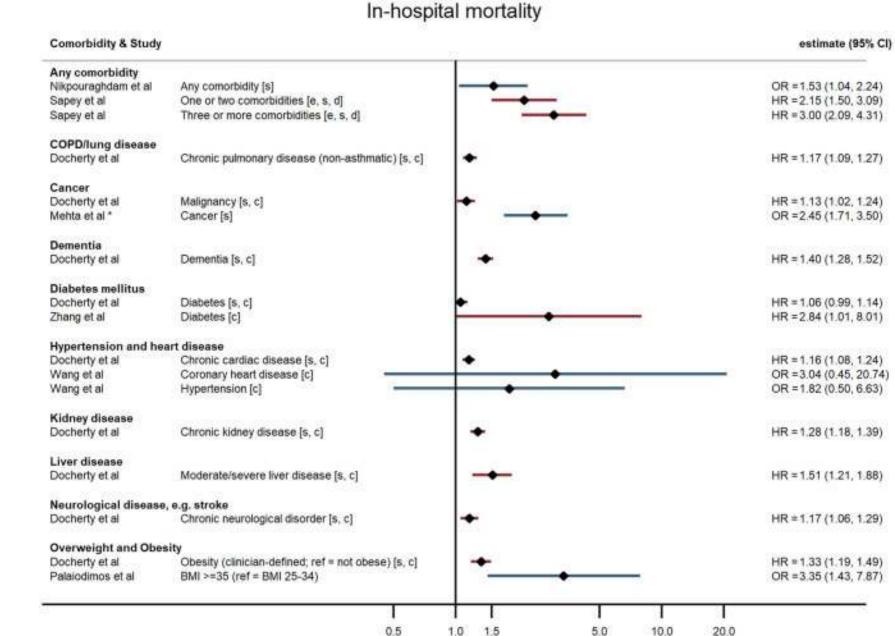
O'Hearn M, Liu J, Cudhea F, et al. Coronavirus Disease 2019 Hospitalizations Attributable to Cardiometabolic Conditions in the United States: A Comparative Risk Assessment Analysis. *J Am Heart Assoc*. 2021;10(5):e019259.

Mason KE, Maudsley G, McHale P, et al. Age-Adjusted Associations Between Comorbidity and Outcomes of COVID-19: A Review of the Evidence From the Early Stages of the Pandemic. *Front Public Health*. 2021;9:584182

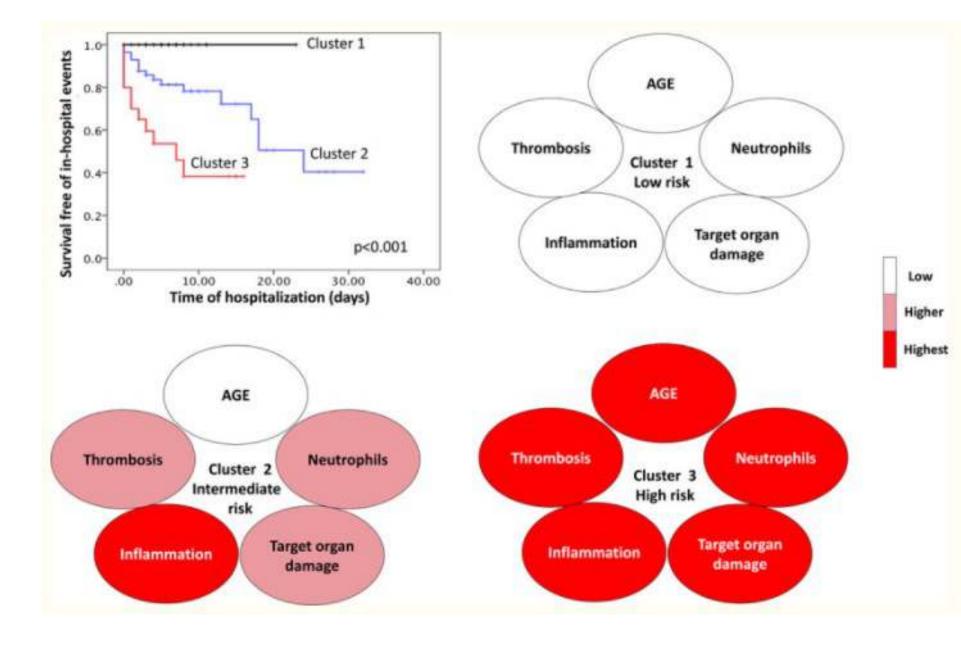
Blood Sugar Control Hugely Impacts Risk


- While most of the research is on overt diabetes, even just poor blood sugar control in nondiabetics increases risk of all aspects of COVID
- For diabetic patients, both high and low glucose levels are risk factors for severe COVID-19
- Blood sugar control critical for COVID resistance

Shauly-Aharonov M, Shafrir A, Paltiel O, et al. Both high and low pre-infection glucose levels associated with increased risk for severe COVID-19: New insights from a population-based study. *PLoS One*. 2021;16(7):e0254847.

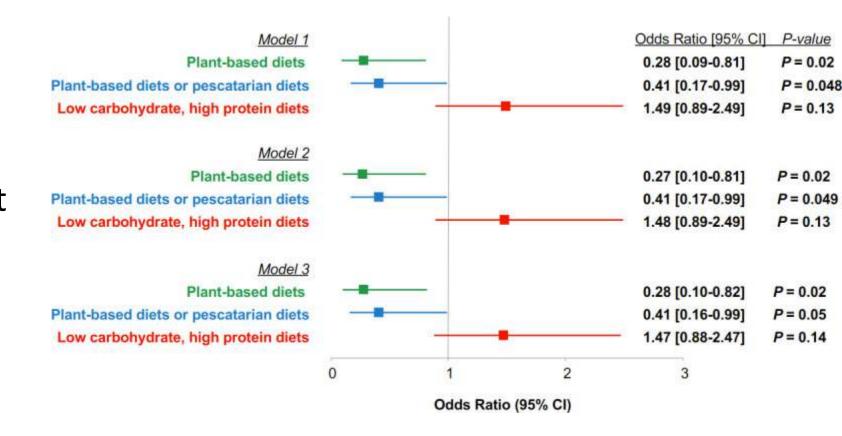

Obesity

- Much of obesity correlation due to insulin resistance
- Strong correlation with inflammation
- Strong correlation with environmental toxins


Mahamat-Saleh Y, Fiolet T, Rebeaud ME, et al. Diabetes, hypertension, body mass index, smoking and COVID-19-related mortality: a systematic review and meta-analysis of observational studies. *BMJ Open*. 2021;11(10):e052777.

Hospital Mortality Predictors

Mason KE, Maudsley G, McHale P, Pennington A, Day J, Barr B. Age-Adjusted Associations Between Comorbidity and Outcomes of COVID-19: A Review of the Evidence From the Early Stages of the Pandemic. *Front Public Health*. 2021;9:584182.


More Risk
Factors =
More Severe
Disease and
Increased
Death Rate

Ronderos Botero DM, Omar AMS, Sun HK, et al. COVID-19 in the Healthy Patient Population: Demographic and Clinical Phenotypic Characterization and Predictors of In-Hospital Outcomes. *Arterioscler Thromb Vasc Biol.* 2020;40(11):2764-2775

Diet

- 568 cases; 2316 controls
- Self reported diets
- Consistent across different severity criteria
- Model corrections for various potential confounding variables did not affected outcomes

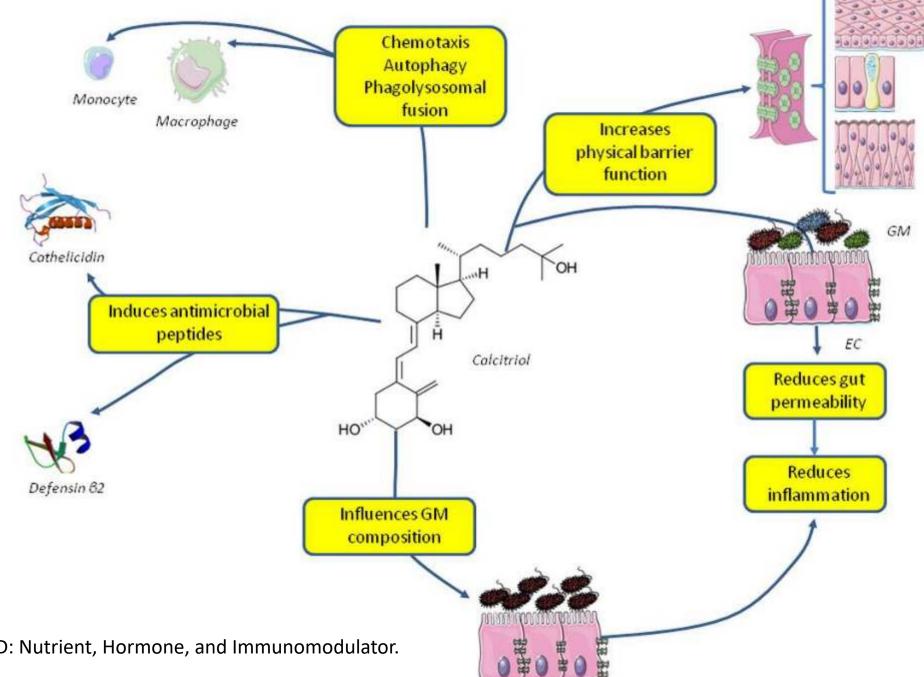
Kim H, Rebholz CM, Hegde S, et al. Plant-based diets, pescatarian diets and COVID-19 severity: a population-based case-control study in six countries. *BMJ Nutr Prev Health*. 2021;4(1):257-266. Published 2021 Jun 7. doi:10.1136/bmjnph-2021-000272

Nutritional Status

Vitamin C and COVID Resistance

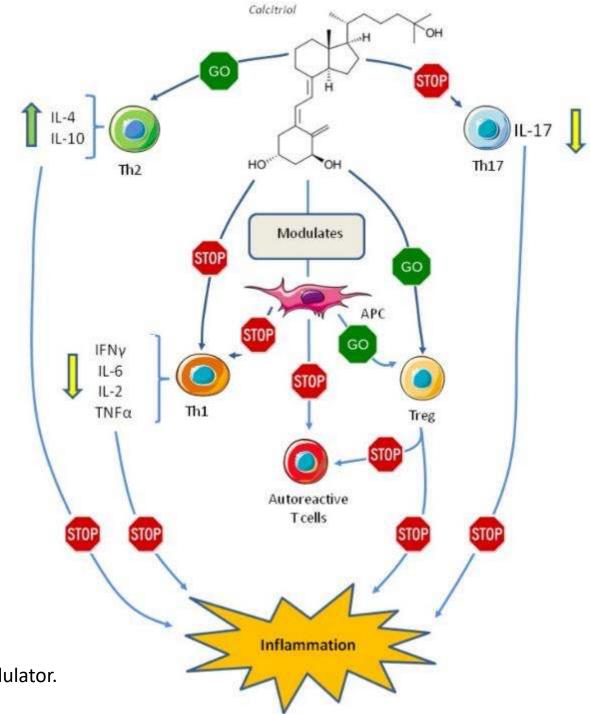
Vitamin C	Infect	Severe	LongC	Death	PMIDs	Notes
Blood level		82% < 0.4 mg/dL			34243781	94% undetectable vitamin C in ICU
IV C 7 days		ND		ND	33420963	Only benefit was oxygenation & IL6
IV 12 g bid 7 days		ND		ND	33573699	Longer time in hospital
C + Zn		ND		ND	33576820	

ND = No statistical difference


Omega-3 Fatty Acids and COVID Resistance

Ω-3	Infect	Severe	LongC	Death	PMIDs	Notes
Deficient		2.2		3.6	34360016	
1000 mg Ω-3 (400 mg EPAs, 200 mg DHAs)/d - 1 mo				0.14	33781275	Survival 21% versus 3% control

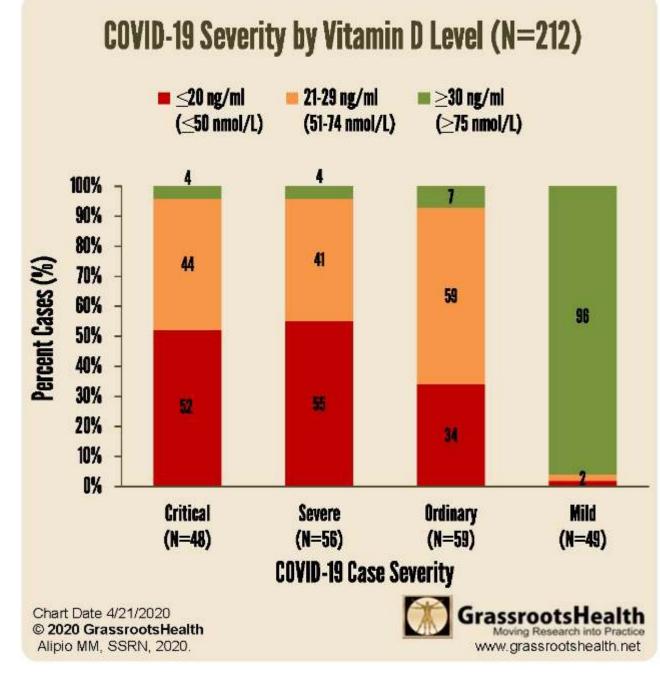
Hard to Overstate Importance of Vitamin D


- Immune function
- Inflammation balancing
- Deficiency extremely common

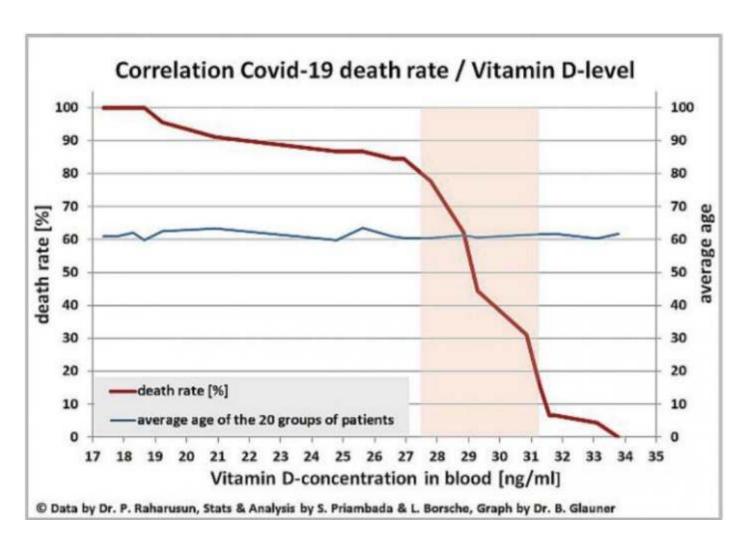
Vitamin D Critical to Many Aspects of **Immune** Function

Sassi F, Tamone C, D'Amelio P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients. 2018 Nov 3;10(11)

Vitamin D Critical for Inflammation Balance

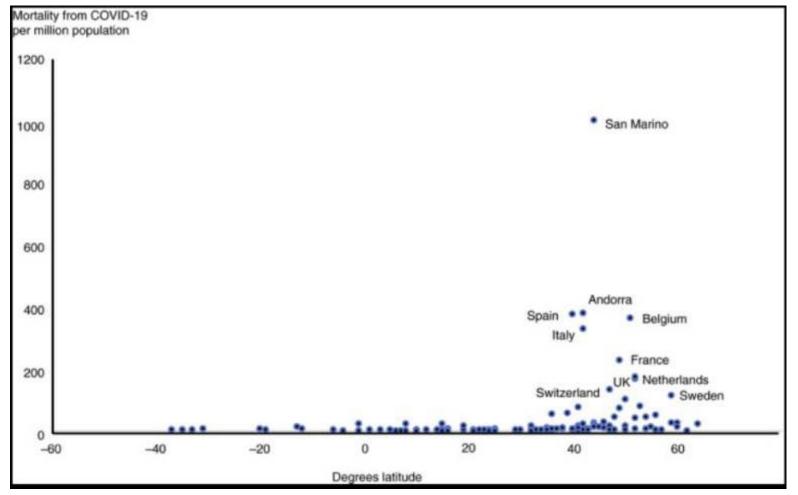


Sassi F, Tamone C, D'Amelio P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients. 2018 Nov 3;10(11)

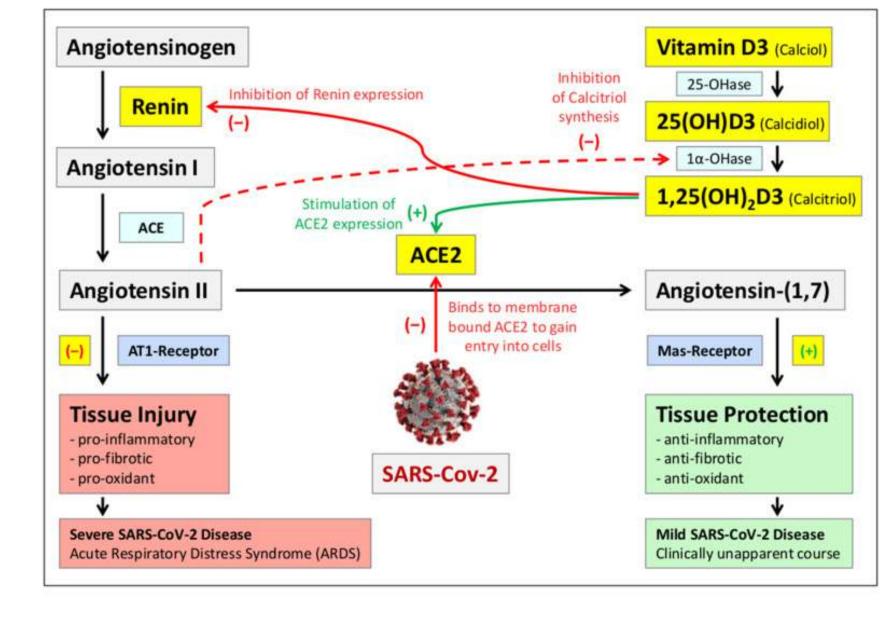

Severity Correlates with Deficiency

Optimal: 50-80 ng/ml

No column in optimal range!



Vitamin D Critical!!

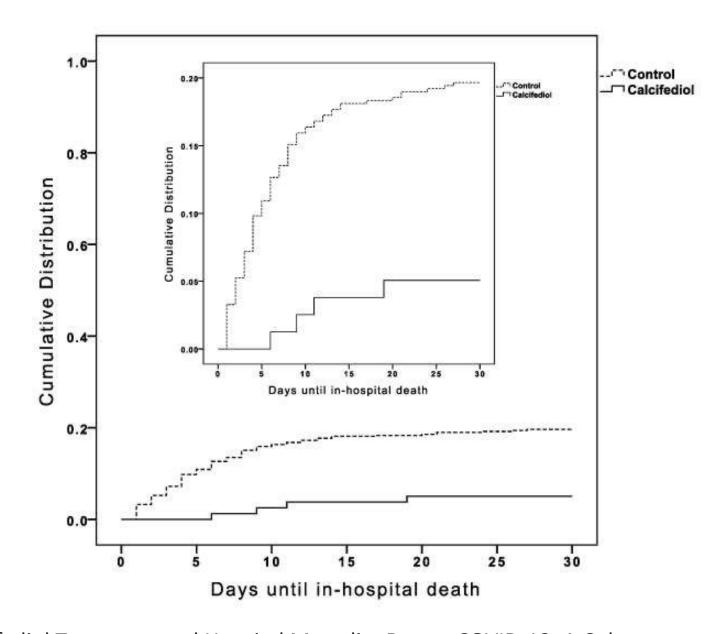

Correlation Between Pandemic & Latitude

- Many possible reasons:
 - Vitamin D
 - UV exposure
 - Higher temperatures
 - Less international travel

Rhodes JM, Subramanian S, Laird E, Kenny RA. Editorial: low population mortality from COVID-19 in countries south of latitude 35 degrees Nort supports vitamin D as a factor determining severity. Aliment Pharmacol Ther. 2020 Jun;51(12):1434-1437 PMID: 32311755

Vitamin D and ACE2

Borsche L, Glauner B, von Mendel J. COVID-19 Mortality Risk Correlates Inversely with Vitamin D3 Status, and a Mortality Rate Close to Zero Could Theoretically Be Achieved at 50 ng/mL 25(OH)D3: Results of a Systematic Review and Meta-Analysis. *Nutrients*. 2021;13(10):3596.


Vitamin D and ACE2

Interaction of vitamin D3 with the renin-angiotensin system (RAS): The reninangiotensin system (RAS) is an important regulator of blood volume and systemic vascular resistance for the adjustment of blood pressure. The balance between angiotensin II and angiotensin-(1,7) is a critical factor for the proper functioning of the system [87]. Angiotensin-converting enzyme 2 (ACE2) is responsible for converting angiotensin II to angiotensin-(1,7). Angiotensin II primarily triggers vasoconstriction but can also cause inflammation, fibrosis, and oxidative stress in the absence of its counterpart, angiotensin-(1,7). ACE2 is the primary receptor of SARS-CoV-2, which decreases its activity, leading to an increase in angiotensin II levels and a decrease in angiotensin-(1,7) levels. This effect ultimately triggers SARS-CoV-2-induced "acute respiratory distress syndrome" (ARDS) [85,86]. Calcitriol, the active metabolite of vitamin D3, minimizes this effect by inhibiting renin expression and thus angiotensin II synthesis and by stimulating ACE2 expression [88,89], enhancing the conversion of angiotensin II to angiotensin-(1,7). Thus, insufficient vitamin D blood levels lead to the development of severe courses of SARS-CoV-2 disease. In addition, it has been shown that high angiotensin II levels lead to downregulation of the enzyme 1-alpha-hydroxylase [93], which is required for the formation of calcitriol, thereby exacerbating the negative consequences of vitamin D deficiency.

Borsche L, Glauner B, von Mendel J. COVID-19 Mortality Risk Correlates Inversely with Vitamin D3 Status, and a Mortality Rate Close to Zero Could Theoretically Be Achieved at 50 ng/mL 25(OH)D3: Results of a Systematic Review and Meta-Analysis. *Nutrients*. 2021;13(10):3596.

Calcifediol [25(OH)D₃] Effective

- Vitamin D supplementation beneficial, but active form more effective
- Dosage
 - 0.532 mg on entry
 - 0.266 mg on days 3, 7, 14, 21, 28
 - 1 mg = 40,000 IUs

Alcala-Diaz JF, Limia-Perez L, Gomez-Huelgas R, et al. Calcifediol Treatment and Hospital Mortality Due to COVID-19: A Cohort Study. *Nutrients*. 2021;13(6):1760.


Clinical Application

- Giving vitamin D to seriously ill COVID patients has limited benefit
 - Probably because activation in liver is too slow
- Giving activated vitamin D—25(OH)D₃—very effective

Toxin Exposure

PM_{2.5} Levels Proportional to COVID Risk

1 μg/m³
 increase in 10 year annual
 average PM2.5
 associated with
 18% higher
 hospitalization
 (OR: 1.18).

Mendy A, Wu X, Keller JL, et al. Air pollution and the pandemic: Long-term $PM_{2.5}$ exposure and disease severity in COVID-19 patients. *Respirology*. 2021;26(12):1181-1187.

Air Pollution Increases Many Parameters of COVID-19 Disease

Except ozone??

Kogevinas M, Castaño-Vinyals G, Karachaliou M, et al. Ambient Air Pollution in Relation to SARS-CoV-2 Infection, Antibody Response, and COVID-19 Disease: A Cohort Study in Catalonia, Spain (COVICAT Study). *Environ Health Perspect*. 2021;129(11):117003.

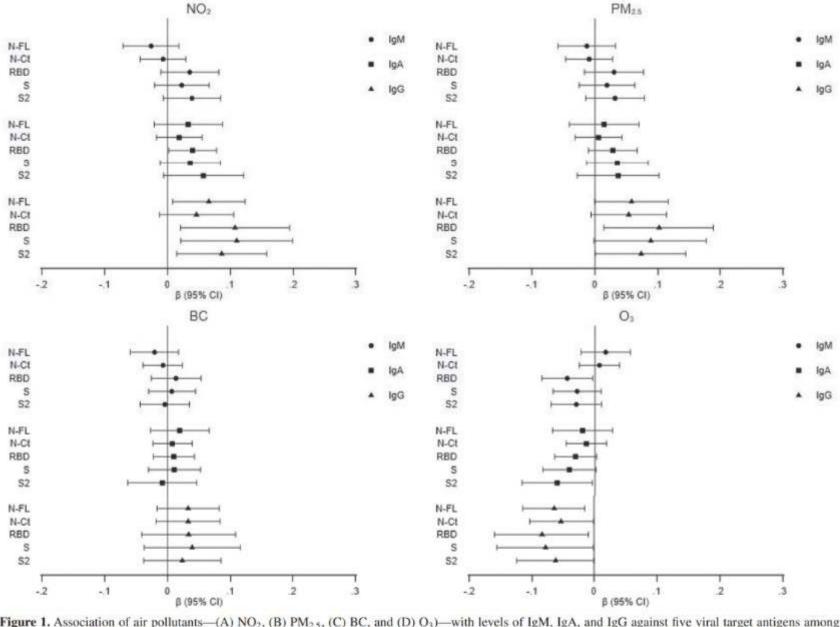
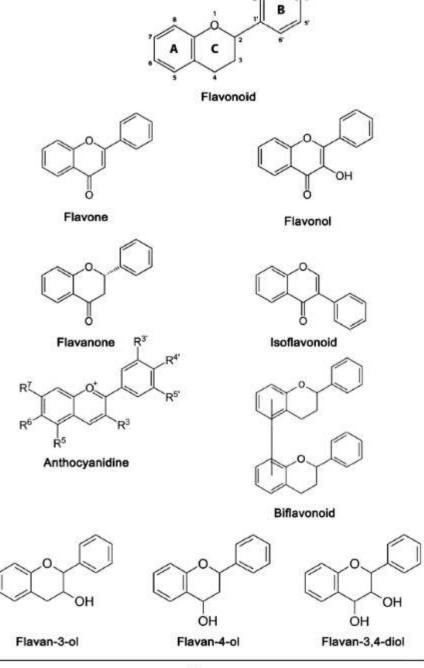


Figure 1. Association of air pollutants—(A) NO₂, (B) PM_{2.5}, (C) BC, and (D) O₃)—with levels of IgM, IgA, and IgG against five viral target antigens among participants of the COVICAT study who were seropositive (n = 743). Linear regression beta coefficients and 95% CIs were adjusted for potential confounders. The model was adjusted for age, sex, education (less than primary/primary/secondary/university), deprivation index (quintiles), population density, type of survey (online/telephone), and batch. Precise numerical values are shown in Table S6. Note: BC, black carbon; CI, confidence interval; COVICAT, COVID-19 cohort in Catalonia study; IgA, immunoglobulin A; IgG, immunoglobulin G; IgM, immunoglobulin M; NCt), nucleocapsid C-terminal region; NFL, nucleocapsid full protein; NO₂, nitrogen dioxide; O₃, ozone; PM_{2.5}, fine particulate matter; RBD, receptor-binding domain; S, spike full protein; S2, S2 fragment.

Air Filters Work

- Just 2 days in a clean room
- Merv-12 filter
- 33-58% reduction in inflammatory mediators
- Decrease in blood pressure

TABLE 33.3 Reduction in Blood Pressure and Inflammatory Markers After 48 Hours of Residence in a Room with a MERV 12 Filter Unit


Cardiovascular	Biomarkers			
Systolic pressure – avg.	IL-1B - 58% reduction			
2.7 mm Hg drop	Soluble CD40 ligand -			
Diastolic pressure – avg.	55% reduction			
4.8% mm Hg drop	Myeloperoxidase - 33%			
Exhaled nitrous oxide –	reduction			
17% drop	Monocyte			
	chemoattractant protein 1–17.5% reduction			

Data from Chen, R., Zhao, A., Chen, H., Zhao, Z., Cai, J., Wang, C., et al. (2015). Cardiopulmonary benefits of reducing indoor particles of outdoor origin: a randomized, double-blind crossover trial of air purifiers. *Journal of the American College of Cardiology*, 65(21), 2279–2287.

The Promise of Anti-viral Flavonoids

Flavonoids Defined

- Complex polyphenolic molecules with a core of 2 phenyl rings plus a heterocyclic ring
- Wide range of number of additional rings, substitutions
- Play a major role in the color and taste of foods
- >6, 000 flavonoids that have been structurally identified thus far
- PubMed "flavonoids" with limit "human" produced over 50,000 hits

Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol. 2017 Sep;162(9):2539-2551. PMID: 28547385

Antiviral Activities

- Many flavonoids have documented antiviral efficacy and several key mechanisms have been identified
 - Directly viricide
 - Block viral binding
 - Block transcription
 - Block co-option of intracellular enzymes required for replication
- Secondary antiviral effects:
 - Zinc ionophores—i.e., facilitate zinc entry into cells where it directly inhibits viral replications

Example Viruses Inhibited by Flavonoids

- Avian influenza H5N1 virus
- Human cytomegalovirus (HCMV)
- EBV
- Herpes simplex I and II
- Severe acute respiratory syndrome coronavirus (SARS-CoV)
- Rhesus rotavirus
- Chikungunya virus
- Japanese encephalitis virus (JEV), etc.

Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol. 2017 Sep;162(9):2539-2551. PMID: 28547385

Example Antiviral Flavonoids

- Apigenin
- Baicalein
- Chrysin
- Hesperidin
- Luteolin
- Myricetin
- Quercetin
- Scutellarein
- Tangeritin
- Wogonin
- 6-hydroxyflavone
- And many, many more.

Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol. 2017 Sep;162(9):2539-2551. PMID: 28547385

Huge Amount of Direct Research on Flavonoids and SARS-CoV2

- Molecular docking simulations
- In silico modeling
- Cell cultures
- Animal studies
- Human clinical trials

Hypothesis 1

- Much of the problems caused by SARS-CoV2 comes from spike proteins penetrating and damaging the microvasculature
- Flavonoids inhibit spike protein attachment to cells
- Could a person's body level of flavonoids predict:
 - Severity of COVID
 - Risk of Long COVID
 - Risk of ADRs from mRNA vaccines (since they cause the cells to produce spike protein)

Hypothesis 2

• Is the increasing incidence of epidemics and pandemics due to loss of flavonoids from the food supply?

Supplementation

Why a Flavonoid?

- Many flavonoids have documented antiviral efficacy
- Several key mechanisms:
 - Directly viricidal
 - Block viral binding
 - Block transcription
 - Block cooption of intracellular enzymes required for replication, etc.
- Many classes of viruses: e.g., avian influenza H5N1 virus, human cytomegalovirus (HCMV), EBV, Herpes simplex I and II, severe acute respiratory syndrome coronavirus (SARS-CoV), rhesus rotavirus, CHIKV, Japanese encephalitis virus (JEV), etc.

Antiviral Activity

- Examples of antiviral flavonoids: apigenin, baicalein, chrysin, hesperidin, luteolin, myricetin, quercetin, scutellarein, tangeritin, wogonin, 6-hydroxyflavone, etc.
- Flavonoids have been leaving the food supply due to:
 - Growing foods with synthetic chemicals
 - Glyphosate blocking shikimate pathway which produces flavonoids
 - Tilling which disrupts the soil's microbiome

What Are Flavonoids?

- Connected benzene rings with a wide range of substitutions and additions
- Many are colorful
- >6,000 flavonoids that have been structurally identified
- Huge range of important indirect and direct physiological functions that promote health in many ways

Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol. 2017 Sep;162(9):2539-2551. doi: 10.1007/s00705-017-3417-y. PMID: 28547385

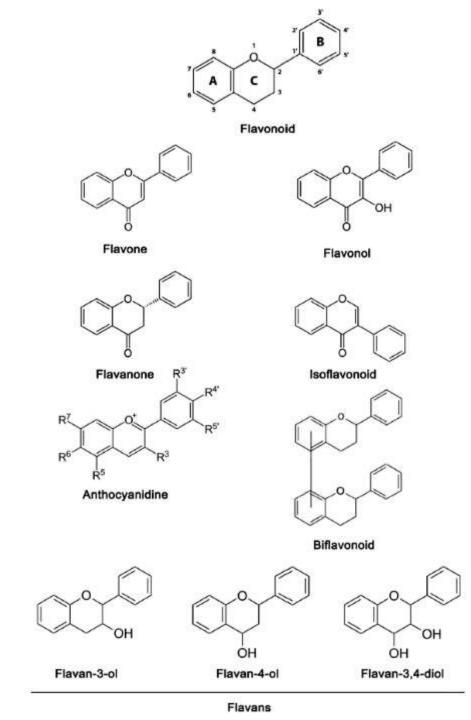
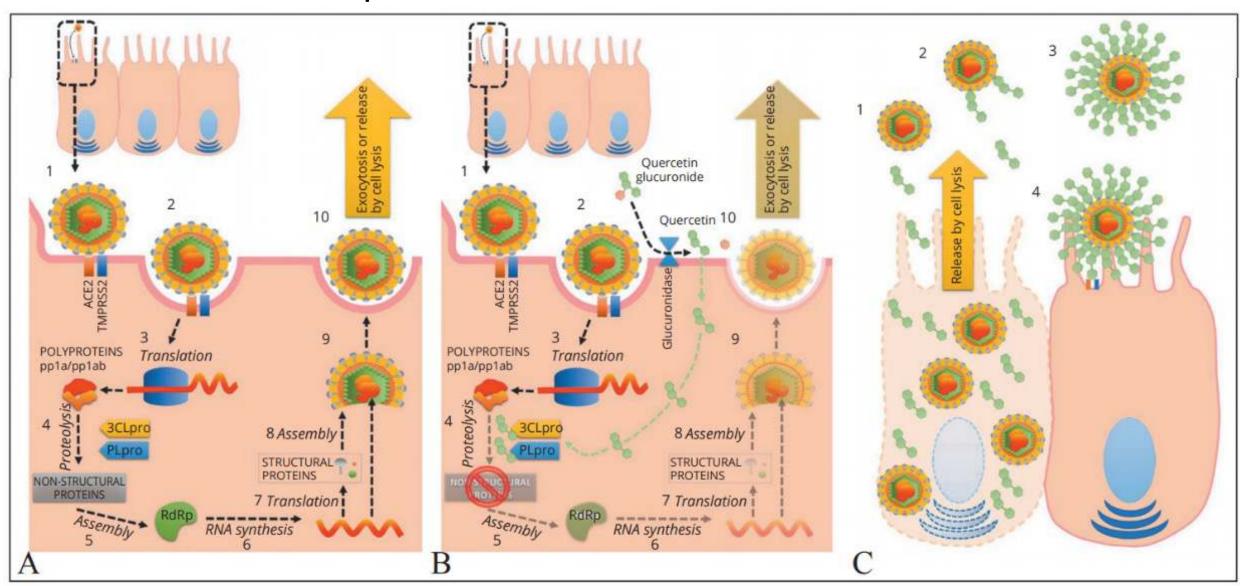



Table 2 Antiviral activity of other flavonoids

Flavonoids	Class	Source(s)	Antiviral activity	Other biological activities	
Myricetin	Flavonol	Red (grape) wine, leaves of sweet potato (Ipomoea batatas), parsley (Petroselinum crispum), tea plant (Camellia sinensis), and fruits of blueberries (Vaccinium genus)	Moloney murine leukemia virus [7], SARS-CoV [63], influenza viruses [77], HIV-1 [103], Rauscher murine leukemia virus [104]	Anticarcinogenic, antioxidant, antithrombotic and anti- inflammatory activity	
Hesperetin	Flavanone	Fruits of orange (Citrus aurantium),	CHIKV [1],	Antioxidant,	
		lemon (Citrus limon), mandarin (Citrus reticulata) and peppermint (Mentha piperita)	yellow fever virus [12], HSV-1 [61], Sindbis virus [102]	anti-inflammatory, anti- allergic, hypolipidemic, vasoprotective and anticarcinogenic activity	
Chrysin	Flavone	Honeycomb, leaves of passion flowers (Passiflora caerulea and Passiflora incarnata) and chamomile (Matricaria chamomilla)	HSV-1 [111], coxsackie B virus type 3 [117], EV71 [131]	Antioxidant, anticarcenogenic, anti- hypertension, anti-diabetic and antibacterial activity	
Galangin	Flavonol	Propolis, leaves of lesser galangal (Alpinia officinarum) and rhizome of Alpina galanga	Coxsackie B virus type 1 [18], HCV [74], HSV-1 [111]	Antibacterial and anticarcinogenic activity	
Morin	Flavonol	Bark, leaves and stem of white mulberry (Morus alba), leaves and fruit of Osage orange (Maclura pomifera), guava (Psidium guajava), and leaves of old fustic (Maclura tinctoria)	Canine distemper virus [11], Moloney murine leukemia virus [20], potato virus X [36], equid herpesvirus 1 [41]	Antihypertensive, anti- angiogenic, hepatoprotective, neuroprotectant and anti- inflammatory activity	
Tangeretin	Peels of tangerine (Citrus tangerina), orange (Citrus aurantium), lemon (Citrus limon), mandarin (Citrus reticulata)		RSV [141]	Anticarcinogenic activity	
Wogonin	Flavone	Leaves of baical skullcap (Scutellaria baicalensis)	HBV [43], influenza H1N1 virus [58]	Anticarcinogenic and anticonvulsant activity	
Silymarin	Complex of flavonolignans	Seeds of milk thistle (Silybum marianum), artichoke (Cynara scolymus), roots of black cohosh (Actaea racemosa)	CHIKV [72], influenza A virus [119], HCV [128]	Anticarcinogenic, hepatoprotective and antioxidant activity	

Zakaryan H, Arabyan E, Oo A, Zandi K. Flavonoids: promising natural compounds against viral infections. Arch Virol. 2017 Sep;162(9):2539-2551. doi: 10.1007/s00705-017-3417-y. PMID: 28547385

Quercetin Impairs SARS-CoV2

DI Pierro F, Khan A, Bertuccioli A, Maffioli P, Derosa G, Khan S, Khan BA, Nigar R, Ujjan I, Devrajani BR. Quercetin Phytosome® as a potential candidate for managing COVID-19. Minerva Gastroenterol (Torino). 2021 Jun;67(2):190-195. PMID: 33016666.

Study Design

- 30 day, prospective study
- 152 COVID-19 outpatients
 - Half standard of care only
 - Half standard of care plus quercetin
- 500 mg bid liposomal quercetin
 - 400 mg total quercetin/day
 - Open label

This is a Preliminary Study

Strengths

- Dr. Di Pierro respected scientist
 - Expert in natural products research
 - >50 articles in PubMed
 - 2020 AIC speaker
- Prospective study
- Adequate enrollment numbers

Weaknesses

- Not published in major journal
- Di Pierro member of Scientific Board of Pharmextracta
- Open label
- The control group had more comorbidities
 - Sub analysis still showed major benefit

Di Pierro, et al. Possible Therapeutic Effects of Adjuvant Quercetin Supplementation Against Early-Stage COVID-19 Infection: A Prospective, Randomized, Controlled, and Open-Label Study Int J Gen Med 2021:14 2359–2366

Outcomes: All Patients

Measure	Control	Intervention	P Value
Hospitalized	28.9%	9.2%	0.002
Days of hospitalization	6.77	1.57	0.001
Needed O ₂	19.7%	1.3%	0.01
Admitted to ICU	10.5%	0.0%	0.02
Deaths	3.0%	0.0%	0.04

No reported serious adverse events

Di Pierro, et al. Possible Therapeutic Effects of Adjuvant Quercetin Supplementation Against Early-Stage COVID-19 Infection: A Prospective, Randomized, Controlled, and Open-Label Study Int J Gen Med 2021:14 2359–2366

Outcomes: Only Those with No Co-Morbidities

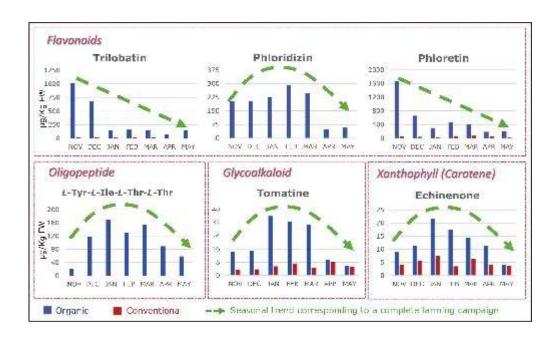
Measure	Control	Intervention	P Value
Hospitalized	22.4%	8.5%	0.08
Days of hospitalization	5.14	1.25	0.01
Needed O ₂	12.9%	0	0.005
Admitted to ICU	6.5%	0	0.05
Deaths	6.5%	0	0.05

Di Pierro, et al. Possible Therapeutic Effects of Adjuvant Quercetin Supplementation Against Early-Stage COVID-19 Infection: A Prospective, Randomized, Controlled, and Open-Label Study Int J Gen Med 2021:14 2359–2366

Quercetin Improves Many Aspects of COVID

Table 7. Quercetin Decreases Viral Load and Clinical Manifestations of SARS-CoV-220

	Group SC	Group QP	p	
RT-PCR (positive subjects) At enrollment At day 7 At day 14 At day 21	21/21 (100%) 19/21 (90.5%) 4/21 (19%) 0/20 (0%)	21/21 (100%) 5/21 (24%) 0/21 (0%) 0/21 (0%)	0.0002	
Symptoms variation° Healed 4/21 (19%) Improved 17/21 (81%) Unchanged 0/21 (0%)		12/21 (57%) 8/21 (38%) 1/21 (5%)	0.0118	
CRP* (mg/L) At enrollment 30.5± 27.9 Day 7 18.1± 22.9		27.2 ± 27.0 12.3 ± 16.5	n. s.	
LDH* (U/L) At enrollment Day 7	at enrollment 364.9± 139.9		0.0001	
Ferritin* (ng/mL) At enrollment 687.8± 879.1 Day 7 557.5± 642.6		532.7 ± 264.9 319.7 ± 151.6	0.0029	
D-dimer* (ng/mL) At enrollment 282.0 ± 240.0 Day 7 183.6 ± 111.8		211.5 ± 65.7 186.3 ± 50.8	n. s.	
Hospitalized patients	1/21 (4.8%)	0/21 (0%)	n. s.	
Patients in ICU	1/21 (4.8%)	0/21 (0%)	n. s.	
Deaths	1/21 (4.8%)	0/21 (0%)	n. s.	


Notes: "Regarding to symptoms, "healed" are those patients who manifest on Day 1 one or more symptoms, but no symptoms on Day 7; "improved" are those patients who show fewer symptoms on Day 7 than on Day 1; "unchanged" are those patients not affected, between the two periods, by variations in their symptoms' frequency. "Values are expressed as mean ± standard deviation.

Abbreviations: SC, standard care; QR, formulated quercetin (+Standard Care); RT-PCR, real-time reverse-transcriptase polymerase chain reaction; LDH, lactate dehydrogenase; ICU, intensive care unit; n. s., not significant.

Di Pierro F, Iqtadar S, Khan A, et al. Potential clinical benefits of quercetin in the early stage of COVID-19: results of a second, pilot, randomized, controlled and open-label clinical trial. Int J Gen Med. 2021;14:2807-2816. doi:10.2147/IJGM.S318949

Growing Foods Chemically Dramatically Lowers Flavonoids

- Tomatoes
- Highly controlled greenhouse
- Shows variation during year
- Dramatic decrease in "unimportant" molecules
- Note: coloring molecules are conserved so food looks normal

Huge Molecular Differences Between Chemically- and

Organically Grown Foods

Metanalysis of 343 studies

- Graph show which has highest % of molecule types
- Organically-grown higher in virtually all the important molecules
- Many of these molecules are anti-viral

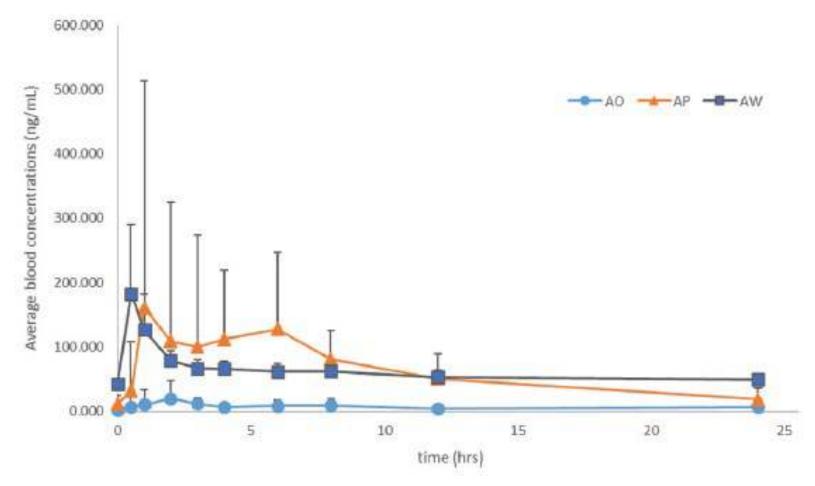
FRAP ORAC TEAC Phenolic compounds Flavonoids (total) Phenolic acids (total) Phenolic acids | ¶ Chlorogenic acid Flavanones | ¶ 212-31±104-65 O Stilbenes Flavones and flavonols Flavones Flavonols | ¶ Quercetin Rutin Kaempferol Anthocyanins (total) Anthocyanins 7-89±14-20 ◆ Carotenoids (total) Carotenoids||¶ Xanthophylls¶ Lutein L-Ascorbic acid Vitamin E Carbohydrates (total) Carbohydrates Sugars (reducing) Protein (total) Amino acids 1 DM¶ Fibre Nitrate¶ DO Nitrite Cd 2.5 SMD

% higher in ORG

100 Parameters

Antioxidant activity

% higher in CONV


-50

-25

Barański M, Srednicka-Tober D, Volakakis N, et al. Higher antioxidant and lower cadmium concentrations and lower incidence of pesticide residues in organically grown crops: a systematic literature review and meta-analyses. Br J Nutr. 2014;112:794-811. PMID: 24968103

Supplementation Critical Due to Sabotage of Food Supply

 Liposomal and LipoMycel much better absorbed

Curcumin and COVID Resistance

Curcumin	Infect	Severe	LongC	Death	PMIDs	Notes
160 mg nano-				0.50	33129099	20% death rate
curcumin 14d						versus 40%

Clinical Takeaways

- Preliminary studies
- Quercetin shown to be safe in many studies
- Liposomal/LipoMycel quercetin is a logical adjunct to standard of care
- Loss of flavonoids from food likely aggravated the pandemic

Recommendations:

- 1. All patients should be advised to consume foods rich in flavonoids
- 2. All patients at risk (everyone?) should be prescribed 500 mg/d of liposomal quercetin
- 3. Caution if transplant patient on immunosupporessives

Mathematics of Converting Risk to Protection

Probability of an Event: Occurring versus Not-Occurring

- Probability of an event occurring = p
 - Probability of an event not occurring = 1-p
- For example, if there is a 20% chance of rain (p = 0.2), there is an 80% chance of no rain (1-p = 0.8)

Odds Ratio (OR)

- Odds are p/(1-p)
 - Put another way, odds represent the probability of an event happening divided by the probability of the event not happening
- Odds ratio (OR) represents the odds of a certain outcome in one group, divided by the odds of that same outcome in another group
- Example, among passengers on the Titanic
 - 462 women; 308 survived and 154 died
 - 851 men, 142 survived and 709 died
 - The odds of a woman dying were 0.5 (154/308), while for men the odds of dying were about 5 (709/142).
 - When comparing these two groups, the OR for dying was approximately 10 comparing men to women

Converting ORs into Percentages

- For ORs greater than 1, subtract 1 from the OR
- For ORs less than 1, subtract the OR from 1
- For both, multiply by 100 to get a percentage
- From last slide, men had a 400% greater odds of dying, while women had a 90% lower odds.

Calculating Protection

- OR for severe COVID-19 among those with elevated FBG was 1.55 compared to the group without an elevated FBG
 - In other words, there was a 55% increase in odds ([1.55 1] \times 100) for the group with an elevated FBG.
- The OR for having severe COVID-19 among the group with a normal FBG is 0.645 (1/1.55) compared to those with an elevated FBG
- Therefore, those with a normal FBG had a 35.5% lower odds ([1-0.645] × 100) for severe COVID-19

⇒ A normal FBG conferes 35.5% protection

Putting It All Together

	In	fection	Severe Disease		Death		
		%		%		%	
Modifiable Factor	OR	Protection	OR	Protection	OR	Protection	Reference
None of the 4 major cardiometabolic risk factors				64%			O'Hearn et al (2021)
Normal weight (OR for obesity)	2.73	63%	3.81	74%	1.61	38%	Cai et al (2021)
Normal blood sugar (OR for diabetes or elevated FBG levels)			1.55	35%	3.21	69%	Shauly-Aharonov et al (2021); Gregory et al (2021)
Healthy Vitamin D (OR for def)					3.87	74%	De Smet et al (2021)
Healthy Ω-3 fatty acid levels						72%	Zapata et al (2021)
Diet							
Vegan				73%			Kim et al (2021)
Pescatarian				59%			Kim et al (2021)
NOT high protein				74%			Kim et al (2021)
Vitamin D supplementation			0.27	73%			Pal et al (2021)
Quercetin supplementation				68%			Di Pierro et al (2021)

Bayes and Risk

- For **independent** variables, protection is calculated by multiplying the risks (or 1-protection)
- For example, for severe disease
 - No co-morbidities = 64% protection
 - Normal weight = 74% protection
 - Normal blood sugar = 35% protection
 - High plant diet = 73% protection
 - Taking liposomal quercetin = 68% protection
- IF all are independent variables, for just these 5 factors, a person's risk of severe disease is: 0.36 * 0.26 * 0.65 * 0.27 * 0.32 = 0.00525
- In other words, 99.5% protection

Conclusion

Everyone Must Increase Their protection from COVID

- Whether vaccinated or not; regardless of strain
- Co-morbidities primary cause of serious disease and death
- Most people significantly deficient in vitamins C and D, omega-3 fatty acids and dietary flavonoids
- Doing everything right dramatically decreases risk of significant infection, serious disease and death
- These strategies are very likely to be equally effective against LongC. However, little significant research at this time